

Red Hill Bulk Storage Facility: Groundwater Flow Hypotheses Testing

Groundwater Model Working Group (GWMWG) Meeting October 18 & 19, 2021

Prepared October 15th, 2021

Prepared in Collaboration with Robert Whittier, Donald Thomas, Gary Beckett

Technical Presentation Background

Examples of Lessons Learned, their Evaluation, and Potential Implications

- Previous presentations describe some technical concerns about the Navy groundwater models
- Some lessons have been learned from review of these models and the accompanying CSM document
- Two examples are presented:
 - 1. Parameterization methods and the clinker model
 - 2. Evaluating potential sources of water to wells
- These are demonstrated using local-scale calculations

Example 1(A): Basalt Parameterization Methods

- The "clinker model" illustrates patterns and provides improved fit statistics for observations but overwhelms directional anisotropy important to transport and capture:
 - Capture at high flows may overwhelm this effect i.e., *EPM with direction anisotropy is representative*
 - Capture at low flows is modeled as deriving from large clinker but would in reality extend preferentially along true but unknown clinkers i.e., EPM with direction anisotropy is not representative

Example 1(A):

- Drawdown pattern calculated using analytic element approach assuming longitudinal drain
- Superimposed
 Navy clinker model
 zonation

Example 1(A):

- Hypothetical flow arrows reflect combined effect of pumping and aligned connectivity.
- Sources of water to RHS may include vertical flow.
- Competent basalt Clinker / frac. bas.

Example 1(B): Containment, Capture, and Source(s) of Water

- The terms "source of water to wells" and "capture" appear in different contexts:
 - The water-budget context addresses water-budget components affected by pumping but it does not address pathways.
 - The transport context focuses on flow paths, identifying where water discharging at a well entered the system. It relates to the "Zone of Contribution".
 - The region of hydraulic containment is a 3D surface that separates water that will ultimately be recovered by the well from water that will not.
- Improved understanding of the water budget aspects of "sources of water to wells" improves understanding in the transport context.
- Mixing analyses can identify sources and sinks of water, with implications for the hydraulic containment (or *capture zone*) developed by RHS.

Why Mixing Analyses?

- Mixing analyses enable a flow model to be used to calculate contributions to pumped wells of various potential sources such as recharge and boundaries.
- Output from these calculations can be used as mixing proportions to evaluate geochemical data, enabling this information to be used to understand flow patterns.

Technical Presentation Outline

- Technical Approach
- Example Applications
- Discussion
- Next Steps for AOC parties

Technical Approach

Conceptualization and Development — 1: Principal Study Questions (PSQs) and Hypotheses

- Are observed conditions consistent and plausible:
 - Low gradients, high transmissivity, and elevated chlorides?
 - Does upwelling contribute chlorides and other constituents to groundwater?
 - Is there evidence for compartmentalization and what role does this play?
- Can these conditions demonstrate reasonable correspondence to locally-measured pumping effects and estimate capture?

Conceptualization and Development – 2: Development

- Local-scale flow-conserved framework that is sufficiently complex to evaluate PSQs but simple enough to be quickly modified and executed:
 - Layering based on best-available dip & strike information
 - Structure-imitating basalt parameterization using parameter values consistent with other sources of information
 - Boundaries emphasizing local-scale data and regional-scale analyses
 - Reasonable and unbiased calibration.
- Intent is to provide lessons-learned or other information for quantitative or qualitative use within the Navy model(s).

Analysis Domain and Boundaries

- Rotated grid with cells of sidelength 30ft x 30ft (9m x 9m)
- 15 layers with a 3° dip
- Adjustable combination of GHB and CHD boundaries
- RHS represented as a "drain" due to uncertain flow rates

Material Types

- Basalt:
 - All cells initially set to basalt
 - Subsequently, saprolite and caprock/tuffs were emplaced
- Saprolite two representations (shallow, deep):
 - Conductivity assumed to be low but not impermeable
- Caprock / tuffs:
 - Outline used to convert encompassed cells in top layer
 - Testing evaluated sensitivity of assumptions with increasing depth

Basic Material Types

Basalt Parameterization -- Scale and Vertical Paths

Basalt Parameterization

- Indicator kriging [IK3D] and realizations [SISIM] to extend proportions and correlation scales to full domain
- Area-of-overlap indicates consistency
- Conditioning to data-rich barrel logs
 vs application to data sparse saturated zone
 - Well log and RHS tunnel data are ultimately used

Incorporation Into Local Model (L2, L8 Shown)

Incorporation of RHS Tunnel Lithology

- Vesicular Basalt
- Massive Basalt
- Clinker Zone
- Saprolite

Example Applications

Example Applications - Overview

- 1. Transient flow calibration
- 2. Forward particle tracking
- 3. Unit source mixing

1. Transient flow calibration - heads

 Plots shown for the heterogeneous three-material realization

1. Transient flow calibration — gradients (TPG)

- All triangles including wells on south side of RHBSF show southward direction
- All triangles not including wells on south side of RHBSF show northwestward direction
- Recall that in this setting, "apparent" gradients do not necessarily indicate actual flow direction, due to anisotropy
- It is currently challenging to consistently represent the local "saddle": Is it real? Is it meaningful?

1. Transient flow calibration – gradients (TPG)

Three-Point Gradients (Observed vs.Simulate) at Triangle 1

Otserves Sine lares		
Accessed to the	11	11
A CONTRACTOR OF THE CONTRACTOR	295.8	290.5
Section 1 Control	325.3	295.5
Andrew Market	1.6e-04	2.2e-04
Marinus Massicus	2.9e-04	5.5e-04

Three-Point Gradients (Observed vs.Simulate) at Triangle 4

CONTRACTOR OF THE PROPERTY OF	200.000
3.4	1.4
181.2	290.1
232.2	296.6
9.36-03	1.5e G4
1,4e-04	3.5 e-04

2. Forward particle tracking – w RHS, Homogeneous

2. Forward particle tracking – w RHS, Heterogeneous

3. Unit source mixing: Contributions to RHS

- Calculated contributions to RHS of the various sources of water as shown
- In this scenario, inflow from Moanalua is dominant: this results from efforts to match the apparent WNW gradient direction indicated by water level data
- This scenario and graphic does not include "upwelling" as a source

3. Unit source mixing: Contributions to RHS

 Could placing bounds on influxes provide proportions that respect independent information on water budgets?

Discussion

Discussion

- Local-scale conditions can be evaluated using methods presented
- The potential to evaluate water quality data has been demonstrated:
 - Mixing analyses can help evaluate and calibrate conditions to independent geochemical analyses to verify flow fields and boundary conditions.
- Mixing analyses help evaluate sources of water to wells, and supplement water budget analyses:
 - Mixing calculations can be made using end-member concentrations. Examples have been developed by Bob Whittier (HDOH).
 - Contributions of water sources to RHS likely are not static over time.
 - Modeling of the capture zone developed by RHS should also reasonably match sources of water as developed through a mixing analysis.

Discussion

- The apparent RHBSF saddle: high Moanalua inflow or deep underflow match low-valued head-differences but are currently unverifiable.
- Compartmentalization: too much and heads don't correspond, too little and uniform flow ensues.
- Vertical flow: a plausible explanation for deeper brackish water at RHS, but it is unclear how this affects individual monitoring well locations.
- Although indicator kriging was used here, Transition Probability and Multi-Point geostatistical approaches, and random-walk stacking methods, were also considered.

Closing Remarks from Regulatory Agencies

